Défi Turing

Accueil - Enoncés -


Problème 125

Envelopper un parallélépipède

Le nombre minimum de cubes pour couvrir toutes les faces visibles d'un parallélépipède rectangle de dimensions 3 x 2 x 1 est 22.


Si nous ajoutions ensuite une deuxième couche à ce solide, il faudrait 46 cubes pour couvrir tous les faces visibles, la troisième couche exigerait 78 cubes, et la quatrième couche exigerait 118 cubes.
Toutefois, la première couche sur un parallélépipède de dimensions 5 x 1 x 1 exige également 22 cubes. De même, la première couche sur des parallélépipèdes de dimensions 5 x 3 x 1, 7 x 2 x 1 et 11 x 1 x 1 demandent toutes 46 cubes.
Nous utiliserons la notation C(n) pour représenter le nombre de parallélépipèdes rectangles qui contiennent n cubes dans une de ses couches. Donc, C(22) = 2, C(46) = 4, C(78) = 5, et C(118) = 8.
Il s'avère que 154 est la plus petite valeur de n pour laquelle C(n) = 10.

Trouver la plus petite valeur de n pour laquelle C(n) = 100.

précédent
suivant