Défi Turing

Accueil - Enoncés -


Problème 133

Le gourou et ses adeptes

Un gourou a enfermé ses 33 adeptes chacun dans une pièce de son immense manoir. Les adeptes ne peuvent pas communiquer entre eux.
Le gourou habite dans une chambre luxueuse de son manoir, dans laquelle se trouve la "lampe de la vérité". Il propose un jeu initiatique à ses adeptes. Chaque jour, il emmènera dans sa chambre un adepte tiré au sort en secret. Là, ce dernier sera libre d'actionner ou non l'interrupteur de la lampe. Le gourou ne touchera jamais la lampe, qui est éteinte au début du jeu.
L'enjeu est le suivant : si un adepte, quand il pénètre dans la chambre du gourou, affirme que tous les adeptes sont déjà venus au moins une fois dans cette chambre et qu'il a raison, les 33 adeptes seront libérés. En revanche, s'il a tort, tous les adeptes entameront un transit vers Vénus...
Avant que le jeu commence et que les adeptes soient isolés dans leur chambre, ils ont un moment pour mettre au point une stratégie. Leur seul moyen de communiquer sera la "lampe de la vérité".

Le fichier tirage.txt contient le résultat de 10'000 tirages au sort du gourou (des numéros de 1 à 33, indiquant la chambre de l'adepte). Sur la ligne 1 se trouve le numéro de l'adepte appelé le premier jour, sur la ligne 2 l'adepte du deuxième jour, etc. Ce fichier ne peut évidemment pas être utilisé pour définir une stratégie, puisque les adeptes n'y ont pas accès.

S'ils découvrent la bonne stratégie, après combien de jours les adeptes seront-ils libérés ?

précédent
suivant